Some complexes containing carbon chains end-capped by $\mathrm{M}(\mathrm{CO})_{2} \mathrm{Tp}^{\prime}\left[\mathrm{M}=\mathrm{Mo}, \mathrm{W} ; \mathrm{Tp}^{\prime}=\mathrm{HB}(\mathrm{pz})_{3}, \mathrm{HB}(\mathrm{dmpz})_{3}\right]$ groups

Michael I. Bruce ${ }^{\mathrm{a}, *}$, Marcus L. Cole ${ }^{\text {a }}$, Maryka Gaudio ${ }^{\text {a }}$, Brian W. Skelton ${ }^{\text {b }}$, Allan H. White ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
${ }^{\mathrm{b}}$ Chemistry M313, SBBCS, University of Western Australia, Crawley, WA 6009, Australia

Received 14 March 2006; received in revised form 29 June 2006; accepted 30 June 2006
Available online 14 July 2006

Abstract

Complexes $\mathrm{M}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2} \mathrm{Tp}^{\prime}\left(\mathrm{Tp}^{\prime}=\mathrm{Tp}\left[\mathrm{HB}(\mathrm{pz})_{3}\right], \mathrm{M}=\mathrm{Mo} 2, \mathrm{~W} \mathbf{4} ; \mathrm{Tp}^{\prime}=\mathrm{Tp}^{*}\left[\mathrm{HB}(\mathrm{dmpz})_{3}\right], \mathrm{M}=\mathrm{Mo} 3\right)$ are obtained from $\mathrm{M}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)(\mathrm{CO})_{2}\left(\right.$ tmeda) (1) and $\mathrm{K}\left[\mathrm{Tp}^{\prime}\right]$. Reactions of 2 or 4 with $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right) / \mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH afforded $\mathrm{M}\left\{\equiv \mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mathrm{CO})_{2} \mathrm{Tp}^{\prime}\left(\mathrm{M}=\mathrm{Mo} 5\right.$, W 6) containing C_{3} chains linking the Group 6 metal and gold centres. In turn, the gold complexes react with $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$ to give the C_{4}-bridged $\left\{\mathrm{Tp}(\mathrm{OC})_{2} \mathrm{M}\right\} \equiv \mathrm{CC} \equiv \mathrm{CC} \equiv\left\{\mathrm{Co}_{3}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}\right\}(\mathrm{M}=\mathrm{Mo} 7$, W 8), while $\mathrm{Mo}(\equiv \mathrm{CBr})(\mathrm{CO})_{2} \mathrm{Tp}^{*}$ and $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$ give $\left\{\mathrm{Tp}^{*}(\mathrm{OC})_{2} \mathrm{Mo}\right\} \equiv \mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C} \equiv\left\{\mathrm{Co}_{3}(\mu-\right.$ $\left.\mathrm{dppm})(\mathrm{CO})_{7}\right\}(9)$ via a phosphine-gold(I) halide elimination reaction. The C_{3} complexes $\mathrm{Tp}^{\prime}(\mathrm{OC})_{2} \mathrm{M} \equiv \mathrm{CC} \equiv \mathrm{CRu}\left(\mathrm{dppe}^{2}\right) \mathrm{Cp}^{*}\left(\mathrm{Tp}^{\prime}=\mathrm{Tp}\right.$, $\mathrm{M}=\mathrm{Mo} 10$, $\mathrm{W} 11 ; \mathrm{Tp}^{\prime}=\mathrm{Tp}^{*}, \mathrm{M}=\mathrm{Mo} 12$) were obtained from $2-4$ and $\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}^{*}$ via KF -induced metalla-desilylation reactions. Reactions between $\mathrm{Mo}(\equiv \mathrm{CBr})(\mathrm{CO})_{2} \mathrm{Tp}^{*}$ and $\mathrm{Ru}\left\{(\mathrm{C} \equiv \mathrm{C})_{n} \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}($ dppe $) \mathrm{Cp}^{*} \quad\left(n=2\right.$, 3) afforded $\left\{\mathrm{Tp}^{*}(\mathrm{OC})_{2} \mathrm{Mo}\right\} \equiv \mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{n}{ }^{-}$ $\left\{\operatorname{Ru}(\mathrm{dppe}) \mathrm{Cp}^{*}\right\}(n=2 \mathbf{1 3}, 3 \mathbf{1 4})$, containing C_{5} and C_{7} chains, respectively. Single-crystal X-ray structure determinations of 1, 2, 7, 8, 9 and $\mathbf{1 2}$ are reported. © 2006 Elsevier B.V. All rights reserved.

Keywords: Carbon chain; X-ray structures; Molybdenum; Tungsten; Gold; Ruthenium; Cobalt; Cluster

1. Introduction

Recent papers describing complexes containing carbon chains end-capped by various metal-ligand combinations describe not only inherently interesting new molecules [1,2], but also relate to nano-scale devices, where these complexes may be considered to be models for molecular wires [3-6]. As has been reviewed recently [1], the majority of these compounds contain chains with an even number of carbon atoms, which is largely a result of the synthetic methods available, which use acetylenic $\left(\mathrm{C}_{2}\right)$ synthons.

We and others have recently directed attention to the synthesis and properties of compounds containing chains

[^0]with an odd number of carbon atoms [7-10]. These compounds are of interest because their electronic structure requires at least one of the $\mathrm{M}-\mathrm{C}$ attachments to involve a multiple bond, i.e., structures A or \mathbf{B} (Chart 1). In contrast, the even-numbered analogues may be represented by structures $\mathbf{C}-\mathbf{E}$, the vast majority having structure \mathbf{C}, which contains two $\mathrm{M}-\mathrm{C}$ single bonds. The synthesis of \mathbf{A} requires one precursor which contains the odd-numbered chain, onto which acetylenic units may be grafted; to our knowledge, the only synthesis (of a C_{3} complex) using a carbene precursor is that of the Group 6 complexes $\left[\mathrm{Tp}^{*}(\mathrm{OC})_{2^{-}}\right.$ $\mathrm{Mo}=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{W}(\mathrm{CO})_{2} \mathrm{Tp}^{*}$ and $\left\{\mathrm{Tp}^{*}(\mathrm{OC})_{2} \mathrm{M}\right\} \equiv \mathrm{CC} \equiv$ $\mathrm{C}\left\{\mathrm{M}^{\prime}(\mathrm{O})_{2} \mathrm{Tp}^{*}\right\}\left(\mathrm{M}, \mathrm{M}^{\prime}=\mathrm{Mo}, \mathrm{W} ; \mathrm{Tp}^{*}=\mathrm{BH}(\mathrm{dmpz})_{3}\right)[10]$.

Consideration of possible precursors leads to the potential use of carbyne complexes, containing $\mathrm{M} \equiv \mathrm{C}$ triple bonds. Alternatively, carbynes attached to a bi- or

Chart 1.
tri-nuclear cluster could be used, and we have shown the utility of the halocarbyne complexes $\mathrm{M}_{3}\left(\mu_{3}-\mathrm{CX}\right) \mathrm{L}_{9}$ $\left[\mathrm{M}=\mathrm{RuH}, \quad \mathrm{OsH}, \quad \mathrm{Co}_{3} ; \quad \mathrm{X}=\mathrm{Cl}, \quad \mathrm{Br}, \quad \mathrm{I} ; \quad \mathrm{L}_{9}=(\mathrm{CO})_{9}\right.$, $\left.(\mathrm{CO})_{7}(\mathrm{dppm})\right]$ in this regard [11]. Mononuclear complexes containing halocarbynes are also known, one of the first to be described being the Group 6 array $\mathrm{M}(\mathrm{CX})(\mathrm{CO})_{2} \mathrm{Tp}^{\prime}$ $\left(\mathrm{M}=\mathrm{Mo}, \mathrm{W} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br} ; \mathrm{Tp}^{\prime}=\mathrm{Tp}\left[\mathrm{BH}(\mathrm{pz})_{3}\right], \mathrm{Tp}^{*}\right)[12]$. Several accounts of alkynylcarbyne complexes containing these Group 6 groups have appeared, commencing with the first preparation [13], and followed some years later by a modified synthesis directly from $\mathrm{M}(\mathrm{CO})_{6}[14]$. In independent studies, Hill and coworkers have recently described related complexes containing C_{3} chains linking the Group 6 centre to various platinum metals [8], and these results prompt this account of our related results using these end-groups.

2. Results and discussion

Earlier reports have described the synthesis of alkynyl-carbyne-molybdenum complexes by treatment of $\mathrm{Mo}(\mathrm{CO})_{6}$ with $\mathrm{LiC} \equiv \mathrm{CBu}^{t}$, followed by addition of $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ and $N, N, N^{\prime}, N^{\prime}$-tetramethyldiaminoethane (tmeda) to give $\mathrm{Mo}\left(\equiv \mathrm{CC} \equiv \mathrm{CBu}^{t}\right)\left\{\mathrm{OC}(\mathrm{O}) \mathrm{CF}_{3}\right\}(\mathrm{CO})_{2}$ (tmeda) [13]. We have made the SiMe_{3} analogue 1 (Scheme 1) by this route, obtaining orange crystals, and have performed a single-crystal structure determination (Fig. 1). The Mo atom is octahedrally coordinated by the $\mathrm{CC} \equiv$ CSiMe_{3} fragment, the $\mathrm{CF}_{3} \mathrm{CO}_{2}$ anion [Mo-O 2.192(4) \AA], two CO groups $[\mathrm{Mo}-\mathrm{C}(10,20) 2.009(9), 1.992(7) \AA]$ and the chelating tmeda ligand $[\mathrm{Mo}-\mathrm{N}(01), \mathrm{N}(02)$ 2.281(6), $2.275(7) \AA$ A , with angles subtended at Mo by cis pairs of ligands ranging between 88.9° and $93.2(3)^{\circ}$, with the exception of the tmeda ligand which, with its small bite angle, subtends an angle of only $79.4(2)^{\circ}$; other $\mathrm{X}-\mathrm{Mo}-\mathrm{N}(0 n)$ angles are larger as a result, ranging from 87.9° to $109.3(5)^{\circ}$. In the context of the present work, the geometry of the alkynylcarbyne is of interest. The distances in the $\mathrm{Mo} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Si}$ fragment $[1.82(1), 1.38(2), 1.21(2)$, $1.84(1) \AA]$ confirm its formulation, with angles at $\mathrm{C}(1,2,3)$ of $174.2(12)^{\circ}, 177.0(16)^{\circ}$ and $178.3(13)^{\circ}$. This atom string is disordered, with an equal population in a rotamerically related second site, located with $\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}\left(1^{\prime}\right) 18.0(8)^{\circ}$ and essentially identical geometrical parameters. The spectroscopic properties are consistent with the solid state structure being retained in solution, with $v(\mathrm{CC})$ at $2046 \mathrm{~cm}^{-1}, v(\mathrm{CO})$ at 2013 and $1934 \mathrm{~cm}^{-1}$ and the carboxylate $v(\mathrm{CO})$ at $1711 \mathrm{~cm}^{-1}$. The NMR spectra contain resonances for the SiMe_{3} group at $\delta_{\mathrm{H}} 0.17$ and $\delta_{\mathrm{C}} 0.54$, for the tmeda ligand at $\delta_{\mathrm{H}} 3.02(\mathrm{Me})$ and $2.80\left(\mathrm{CH}_{2}\right)$ and δ_{C} $50.85,55.69$ and 60.81 , and the $\mathrm{CF}_{3} \mathrm{CO}_{2}$ group at δ_{C} 116.88 and 160.88 [quartets with $J(\mathrm{CF}) 289$ and 36 Hz , respectively]. One of the alkynyl carbons is found at δ_{C} 112.74 and the carbons attached to Mo are at $\delta_{\mathrm{C}} 224.76$ (CO) and $261.16(\mathrm{C} \equiv \mathrm{Mo})$.

Reactions of 1 with KTp or $\mathrm{KTp}^{*}\left(\mathrm{KTp}=\mathrm{K}\left[\mathrm{BH}(\mathrm{pz})_{3}\right]\right.$, $\left.\mathrm{KTp}^{*}=\mathrm{K}\left[\mathrm{BH}(\mathrm{dmpz})_{3}\right]\right) \quad$ overnight give $\mathrm{Mo}(\equiv \mathrm{CC} \equiv$ $\left.\mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2} \mathrm{Tp}^{\prime} \quad\left[\mathrm{Tp}^{\prime}=\mathrm{Tp}\right.$ (2), 34\%; Tp^{*} (3), 30\%]

Scheme 1. Reagents: (i) $\mathrm{HC} \equiv \mathrm{CSiMe}_{3} / \mathrm{LiBu}$; (ii) $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$; (iii) tmeda; (iv) $\mathrm{KTp}^{\prime}\left(\mathrm{Tp}^{\prime}=\mathrm{Tp}, \mathrm{Tp}^{*}\right)$. In this and other schemes, the third pyrazolyl group is indicated by $\mathrm{N}-\mathrm{N}$.

Fig. 1. Plot of a molecule of $\mathrm{Mo}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)\left\{\mathrm{OC}(\mathrm{O}) \mathrm{CF}_{3}\right\}(\mathrm{CO})_{2}($ tmeda $)(\mathbf{1})$.
(Scheme 1). The IR spectrum of $\mathbf{2}$ contains a $v(\mathrm{BH})$ band at $2482 \mathrm{~cm}^{-1}, v(\mathrm{CC})$ at $2046 \mathrm{~cm}^{-1}$, and terminal $v(\mathrm{CO})$ bands at 2004 and $1925 \mathrm{~cm}^{-1}$. As found for all complexes described herein, the Tp^{\prime} ligands in $\mathbf{2}$ and $\mathbf{3}$ give rise to characteristic ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances which generally have a $2 / 1$ relative intensity as a result of the $\mathrm{MoA}_{2} \mathrm{~B}$ ligand coordination. These occur between $\delta_{\mathrm{C}} 104.9$ and 107.8, between 134.8 and 145.7 and between 143.1 and 152.1, being assigned to $\mathrm{C}^{3}, \mathrm{C}^{4}$ and C^{2}, respectively. For $\mathbf{3}$, the latter two resonances are found ca. 8 ppm upfield from those in 2. In a few cases, the two resonances overlap, as in 3, where only one signal at $\delta_{\mathrm{C}} 106.46$ is observed. IR absorptions for the $v(\mathrm{CC})$ and $v(\mathrm{CO})$ vibrations are found in the usual regions, while the carbons of the $\mathrm{Mo} \equiv \mathrm{CC} \equiv \mathrm{C}$ systems are now found at $\delta_{\mathrm{C}} 259.41,113.52$ and 76.48 (for 2) and at $\delta_{\mathrm{C}} 255.41,113.49$ and 75.28 (for 3). The analogous tungsten complex $\mathrm{W}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2} \mathrm{Tp}$ (4) has been reported on an earlier occasion [14a].

Red crystalline $\mathrm{Mo}\left\{\equiv \mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mathrm{CO})_{2} \mathrm{Tp}$ (5) was obtained in 88% yield by reaction of 2 with $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ in the presence of potassium carbonate (Scheme 2). The IR spectrum of this complex contains two strong $v(\mathrm{CO})$ bands at 1982 and 1904, $v(\mathrm{CC})$ at 2015 and $v(\mathrm{BH})$ at $2483 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the pz protons occur at $\delta 5.62,5.72,7.21,7.26,7.30$ and 7.91, being differentiated by the asymmetry at the Mo centre. Carbons of the pz groups resonate at $\delta 106.22$ and
$106.27\left(\mathrm{C}^{3}\right)$, at 136.48 and $136.56\left(\mathrm{C}^{4}\right)$, and at 144.69 and $144.82\left(\mathrm{C}^{2}\right)$ in the ${ }^{13} \mathrm{C}$ NMR spectrum, with two of the $\mathrm{C}(\mathrm{sp})$ atoms found at $\delta 104.65$ and 115.49. The Mo-CO and $\mathrm{Mo} \equiv \mathrm{C}$ resonances are at $\delta 228.42$ and 265.15 , respectively. The ${ }^{31} \mathrm{P}$ NMR spectrum contains a singlet at $\delta 41.6$ for the PPh_{3} ligand. The electrospray (ES) mass spectrum contains various aggregate ions at $m / z 1321([M+$ $\left.\left.\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}\right), 1125\left(\left[\mathrm{M}+\mathrm{HPPh}_{3}\right]^{+}\right), 885\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$and $721\left(\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}\right)$, these being commonly observed in the mass spectra of $\mathrm{Au}\left(\mathrm{PR}_{3}\right)$ complexes [15]. The analogous tungsten complex 6 was prepared in a similar fashion in 69% yield, and has similar spectroscopic properties, including $v(\mathrm{BH})$ at 2483, $v(\mathrm{CC})$ at 2020 and $v(\mathrm{CO})$ at 1970 and $1886 \mathrm{~cm}^{-1}$. In the ${ }^{13} \mathrm{C}$ NMR spectrum, the $\mathrm{W} \equiv \mathrm{C}$ and $\mathrm{W}-\mathrm{CO}$ resonances are at $\delta 258.25$ and 226.73, but the other carbons of the C_{3} were not resolved. Complex 6 was also reported by Hill and his group [16] during the preparation of this paper.

We have previously shown that the $\operatorname{Pd}(0) / \mathrm{Cu}(\mathrm{I})$-catalysed elimination of $\mathrm{AuX}\left(\mathrm{PR}_{3}\right)$ from reactions of compounds containing $\mathrm{C}(\mathrm{sp})-\mathrm{X}\left[\mathrm{X}=\right.$ halide and $\left.\mathrm{Au}\left(\mathrm{PR}_{3}\right)\right]$ groups is an efficient method of forming $\mathrm{C}-\mathrm{C}$ bonds which, in contrast to the well-known Sonogashira reaction, does not require the presence of a base (amine), which may attack the organometallic reactants and products [17]. In this work, we describe the reactions between 5 or $\mathbf{6}$ and $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-$ $\mathrm{dppm})(\mathrm{CO})_{7}[18]$, which proceed under mild conditions

$\mathrm{M}=\mathrm{Mo}(2), \mathrm{W}(4)$

$\mathrm{M}=\mathrm{Mo}(5), \mathrm{W}(6)$

Scheme 2. Reagents: (i) $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right) / \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$.
(thf, r.t., 2 h) to give $\left\{\mathrm{Tp}(\mathrm{OC})_{2} \mathrm{M}\right\} \equiv \mathrm{CC} \equiv \mathrm{CC} \equiv\left\{\mathrm{Co}_{3}(\mu-\right.$ $\left.\mathrm{dppm})(\mathrm{CO})_{7}\right\}[\mathrm{M}=\mathrm{Mo}(7)(39 \%)$, $\mathrm{W}(\mathbf{8})(37 \%)]$ as brown solids (Scheme 3). These complexes were characterised by elemental microanalysis and spectroscopically [IR: five terminal $v(\mathrm{CO})$ bands between 2060 and $1885 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR; pz protons at $\delta 5.68,5.77$ (Mo), 5.60, $5.70(\mathrm{~W})$; ${ }^{13} \mathrm{C}$ NMR: pz carbons at δ 105.44/105.58, 135.47/135.65, 143.09/144.51 (Mo), 106.65/106.71, 135.44/135.76, 144.57/146.05 (W), $\mathrm{C} \equiv \mathrm{C}$ carbons at $\delta 87.79,125.19$ (Mo), Co-CO at $\delta 201.26,209.90$ (br) (Mo), 198.98, 202.00 (W), M-CO at $\delta 230.49$ (Mo), 229.97 (W), M $\equiv \mathrm{C}$ at $\delta 252.92(\mathrm{Mo}), 246.80(\mathrm{~W}) ;$ ES-MS, $[\mathrm{M}+\mathrm{Na}]^{+}$at m / z 1195 (Mo), $[\mathrm{M}-\mathrm{H}]^{-}$at $m / z 1257$ (W)].

The reverse reaction, i.e., between $\mathrm{Mo}(\equiv \mathrm{CBr})(\mathrm{CO})_{2} \mathrm{Tp}^{*}$ and $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{CC} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$, afforded the corresponding $\mathrm{Tp}^{*} \mathrm{Mo}-\mathrm{C}_{6}$ derivative 9 in 72% yield (Scheme 4). The IR spectrum contains bands for $v(\mathrm{C} \equiv \mathrm{C})$ at $2109 \mathrm{~cm}^{-1}$ and $v(\mathrm{CO})$ between 2060 and $1908 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum has two pairs of pyrazolyl-Me res-
onances at $\delta 2.32,2.38$ and 2.34, 2.61 and the two pyrazolyl protons at $\delta 5.71$ and 5.88 . In the ${ }^{13} \mathrm{C}$ NMR spectrum, the pyrazolyl-Me carbons are found at $\delta 12.68,14.65,15.93$ while the ring carbons are at δ 106.34/106.36, 144.45/ 145.07 and 151.28, the Co-CO at $\delta 201.29$, 209.49, the $\mathrm{Mo}-\mathrm{CO}$ at $\delta 229.48$ and the $\mathrm{Mo} \equiv \mathrm{C}$ at $\delta 261.02$. We assign resonances at $\delta 52.55,96.73,100.92$ and 107.95 to four of the six carbon chain nuclei; that attached to the Co_{3} cluster is likely broadened by the ${ }^{59} \mathrm{Co}$ nuclear quadrupole $[19,20]$. The ES MS contains $[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 1302$.

An alternative method of preparing $\mathrm{M}-\mathrm{C}(\mathrm{sp})$ bonds is fluoride-induced metallo-desilylation, which we have shown to be particularly effective in reactions of trimethyl-silyl-substituted alkynes with halides of electron-rich metal centres, such as $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cp}$ [21]. In the present study, the reaction of 2 with $\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}^{*}$ in the presence of KF in methanol afforded red $\left\{\mathrm{Tp}(\mathrm{OC})_{2} \mathrm{Mo}\right\} \equiv \mathrm{C}$ $\mathrm{C} \equiv \mathrm{C}\left\{\mathrm{Ru}(\mathrm{dppe}) \mathrm{Cp}^{*}\right\}(\mathbf{1 0})$ in 60% yield (Scheme 5). The IR spectrum of this complex contains a $v(\mathrm{CC})$ band at

$\mathrm{M}=\mathrm{Mo}(2), \mathrm{W}(4)$

Scheme 3. Reagents: (i) $\mathrm{Co}_{3}(\mu-\mathrm{CBr})(\mu-\mathrm{dppm})(\mathrm{CO})_{7}, \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} / \mathrm{CuI}$.

$$
\begin{gathered}
M=M o, R=H(10), M e(12) \\
M=W, R=H(11)
\end{gathered}
$$

Scheme 5. Reagents: (i) $\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}^{*}, \mathrm{KF}, \mathrm{MeOH}$.

1975, and terminal $v(\mathrm{CO})$ bands at 1902 and $1863 \mathrm{~cm}^{-1}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the pz protons are found at $\delta 5.65$ and 5.85 , with the $\mathrm{Cp}^{*} \mathrm{Me}$ resonance at $\delta 1.50$. Corresponding features are found in the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta 9.98$ and 94.70 (Me and ring C of Cp^{*}), 104.91/105.10, 136.13/136.46, 143.46/144.32 (pz) and 230.65 (Mo-CO); the $\mathrm{Mo} \equiv \mathrm{C}$ resonance was not found. Finally, the ES-MS contains $[\mathrm{M}+\mathrm{H}]^{+}$at m / z 1036. The tungsten analogue $\left\{\mathrm{Tp}(\mathrm{OC})_{2} \mathrm{~W}\right\} \equiv \mathrm{CC} \equiv \mathrm{C}\left\{\mathrm{Ru}(\mathrm{dppe}) \mathrm{Cp}^{*}\right\}$ (11) was obtained similarly from 4 in 36% yield and has comparable spectroscopic properties.

A reaction between 3 and $\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}^{*}$ gave the Tp^{*} analogue (12) as an orange solid in 36% yield, Spectral features are similar to those of $\mathbf{1 0}$, with the dmpz Me groups resonating at $\delta_{\mathrm{H}} 2.18,2.24,2.63$ and 2.69 and the remaining pz H atoms at $\delta 5.46$ and 5.65. In the ${ }^{13} \mathrm{C}$ NMR spectrum the $\mathrm{Cp}^{*} \mathrm{Me}$ and ring carbons are at $\delta 10.67$ and 95.07, respectively, with the pz Me groups at $\delta 13.30,15.59$ and
16.62; the ring carbons are found at $\delta 106.28 / 106.47$, 143.51/143.86, 151.51/151.66, while the Mo-bonded CO and carbyne carbons resonate at $\delta 230.95$ and 254.47, respectively.

Lengthening of the carbon chain was achieved by $\operatorname{Pd}(0) /$ $\mathrm{Cu}(\mathrm{I})$-catalysed reactions between $\mathrm{Mo}(\equiv \mathrm{CBr})(\mathrm{CO})_{2} \mathrm{Tp}^{*}$ and $\mathrm{Ru}\left\{(\mathrm{C} \equiv \mathrm{C})_{n} \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}($ dppe $) \mathrm{Cp}^{*} \quad(n=1$, 2) which afforded the red C_{5} and C_{7} complexes $\left\{\mathrm{Tp}^{*}(\mathrm{OC})_{2}\right.$ $\mathrm{Mo}\} \equiv \mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{n}\left\{\mathrm{Ru}(\right.$ dppe $\left.) \mathrm{Cp}^{*}\right\} \quad(n=1$ 13, 2 14) in 67 and 49% yield, respectively (Scheme 6). Elemental analyses and the ES mass spectra confirmed the formulations of these complexes, supported by the usual spectroscopic data. Thus, the IR spectra contain three $v(\mathrm{CO})$ bands at 1971, 1899 and 1856 (for 13) and 1990, 1916 and $1868 \mathrm{~cm}^{-1}$ (for 14). Weak $v(\mathrm{C} \equiv \mathrm{C})$ bands were found at 2116, 2069 and $2010 \mathrm{~cm}^{-1}$ for 14. In the ${ }^{1} \mathrm{H}$ NMR spectra, the usual resonances for the ligands are found, while in the ${ }^{13} \mathrm{C}$ NMR spectrum, characteristic resonances at $\delta 10.42$

$$
\mathrm{n}=2(13), 3(14)
$$

and 94.87 (for 13) or $10.55,95.30$ (for $\mathbf{1 4}$) (Cp^{*} Me and ring carbons), between $\delta 13$ and 17 (pz Me groups), and at δ 106.62/106.67, 143.80/144.38, 151.64/152.08 (13) and 107.81, 144.00/145.65, 151.77/152.03 (14) (pz ring carbons) are accompanied by signals at $\delta 53.66,92.65$ (carbon chain), 230.29 or $227.55(\mathrm{M}-\mathrm{CO})$ and $260.85(\mathrm{Mo} \equiv \mathrm{C})$.

2.1. Molecular structures

The molecular structures of $\mathbf{2}, 7, \mathbf{8}, \mathbf{9}$ and $\mathbf{1 2}$ were confirmed by single-crystal X-ray studies. Individual molecules of each of the four complexes are illustrated in Figs. 2-5, with important bond parameters being collected in Table 1.

The common $\mathrm{Mo}(\mathrm{CO})_{2} \mathrm{Tp}^{\prime}$ fragments are similar to those found in many other derivatives which have been studied earlier, of which $\mathrm{Mo}(\equiv \mathrm{Ctol})(\mathrm{CO})_{2} \mathrm{Tp}^{*}(\mathbf{1 5})$ is perhaps the most closely related recent example [22]. In all complexes, the Mo atom is octahedrally coordinated, with the Tp^{\prime} ligand occupying three facial positions. The Mo-N(12, 22) bonds [range 2.213(6)-2.235(9); 2.198(7), 2.231(6) \AA for $\mathrm{W}-\mathrm{N}$ in 8] trans to CO are shorter than $\mathrm{Mo}-\mathrm{N}(32)$ [Mo range 2.289(5)-2.328(7) \AA; W-N(32) 2.296(6) \AA] which is trans to the carbyne ligand, as a result of better back-bonding into the latter. The other three sites are occupied by the two CO ligands and the $\equiv \mathrm{CC} \equiv \mathrm{C}$ group. The $\mathrm{M} \equiv \mathrm{C}(1)$ bonds are considerably shorter, between $1.833(7)$

Fig. 2. Plot of a molecule of $\mathrm{Mo}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2} \mathrm{Tp}$ (2).

Fig. 3. Plot of a molecule of $\left\{\mathrm{Tp}(\mathrm{OC})_{2} \mathrm{Mo}\right\} \equiv \mathrm{CC} \equiv \mathrm{CC} \equiv\left\{\mathrm{Co}_{3}(\mu\right.$-dppm $\left.)(\mathrm{CO})_{7}\right\}$ (7).

Fig. 4. Plot of a molecule of $\left\{\mathrm{Tp}^{*}(\mathrm{OC})_{2} \mathrm{Mo}\right\} \equiv \mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C} \equiv\left\{\mathrm{Co}_{3}(\mu\right.$-dppm $\left.)(\mathrm{CO})_{7}\right\}(\mathbf{9})$.

Fig. 5. Plot of a molecule of $\left\{\mathrm{Tp}^{*}(\mathrm{OC})_{2} \mathrm{Mo}\right\} \equiv \mathrm{CC} \equiv \mathrm{C}\left\{\mathrm{Ru}(\mathrm{dppe}) \mathrm{Cp}^{*}\right\}$ (12).
and $1.868(9) \AA(\mathrm{Mo}), 1.857(7) \AA(\mathrm{W})$, than the two M-CO bonds [range 1.96(1)-2.010(8) \AA; W-CO 1.961(9), $2.010(9) \AA$] , as expected from its multiple-bond character, but longer than that in $\mathbf{1 5}[1.804(4) \AA$. In the complex $\mathrm{Mo}(\equiv \mathrm{Ctol})(\mathrm{CO})_{2} \mathrm{Tp}^{*}$, corresponding values are: $\mathrm{Mo}-$ $\mathrm{N}(12,22) 2.218,2.212(3)$, $\mathrm{Mo}-\mathrm{N}(32)$ 2.306(3), Mo-CO 1.987(4), Mo 三С 1.804(4) A [22].

Along the $\mathrm{Mo} / \mathrm{W}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{X}$ chain, $\mathrm{C}(1)-\mathrm{C}(2)$ is between $1.34(1)$ and $1.399(10) \AA$, while $\mathrm{C}(2)-\mathrm{C}(3)$ is between $1.24(1)$ and $1.258(11) \AA$, somewhat longer than expected for a normal $\mathrm{C}(\mathrm{sp}) \equiv \mathrm{C}(\mathrm{sp})$ triple bond. In the longer chain in 9 , alternation with $\mathrm{C}(\mathrm{sp})-\mathrm{C}(\mathrm{sp})$ single bonds of $1.332(6)$ and $1.371(6) \AA$ and the second $\mathrm{C} \equiv \mathrm{C}$ triple bond of $1.231(6) \AA$, for example, shows that there is a small amount of electron delocalisation occurring. The car-
bon chain is essentially linear, angles at $\mathrm{C}(1,2,3)$ being $176.8(8)^{\circ}, 178.9(7)^{\circ}$ and $179.3(6)^{\circ}(\mathrm{Mo})$, and $176.9(6)^{\circ}$, $175.0(7)^{\circ}, 175.8(7)^{\circ}$ for W , respectively. The $\mathrm{C}(3)-\mathrm{Si}$ separation in 2 [1.846(9) \AA] is not exceptional.

In 7,8 and 9 , the $\mathrm{Co}_{3}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$ clusters are similar to those found in many related examples that we have reported recently, with the dppm ligand occupying equatorial coordination sites bridging the $\mathrm{Co}(1)-\mathrm{Co}(2)$ bond [7,11,18]. The other bond parameters are unexceptional, with Co-Co distances between 2.475 and 2.502(1) \AA, CoP bonds of 2.198-2.219(3) \AA, and $\mathrm{Co}-\mathrm{C}(4$ or 6$)$ being in the range $1.880-1.953(8) \mathrm{A}$.

In 12, the $\mathrm{Ru}(\mathrm{dppe}) \mathrm{Cp}^{*}$ fragment has the expected geometry, with $\mathrm{Ru}-\mathrm{P}$ 2.269-2.297(3) \AA and $\mathrm{Ru}-\mathrm{C}\left(\mathrm{Cp}^{*}\right)$ $2.223-2 / 279(9)$ (av. $2.25_{8} \AA$). The $\mathrm{Ru}-\mathrm{C}(3)$ distance is

Table 1
Selected bond distances (A) and angles $\left({ }^{\circ}\right)$

	Complex 2	Complex 7	Complex $\mathbf{8}^{\text {a }}$	Complex 9	Complex $\mathbf{1 2}^{\text {b }}$
Bond distances (\AA)					
Mo-C(10,20)	2.010(8), 2.007(8)	1.99(2), 1.993(9)	$2.010(9), 1.961(10)$	2.004(7), 1.983(7)	1.97, 1.97(1)
					1.96, 1.97(1)
Mo-N(12,22)	2.234(6), 2.222(6)	2.213(6), 2.231(9)	2.198(7), 2.231(6)	2.223(5), 2.216(5)	2.23(1), 2.235(9)
					2.23, 2.25(1)
Mo-N(32)	2.308(5)	2.313(6)	2.296(6)	2.289(5)	2.328(7), 2.324(8)
Mo-C(1)	1.833(7)	1.838(7)	1.857(7)	1.842(5)	1.868(9), 1.849(9)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.399(10)$	$1.35(1)$	$1.35(1)$	$1.355(6)$	1.34(1), 1.36(1)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.258(11)$	1.25 (1)	1.24(1)	1.246 (6)	1.24(2), 1.25(2)
$\mathrm{C}(3)-\mathrm{X}$ [X]	$1.846(9)$ [Si]	1.40(1) [C(4)]	$1.38(1)$	1.332(6) [C(4)]	1.97(1), 1.95(1) [Ru]
$\mathrm{Co}(1)-\mathrm{Co}(2,3)$		2.501, 2.485(2)	2.475, 2.491(1)	2.490, 2.483(1)	
$\mathrm{Co}(2)-\mathrm{Co}(3)$		2.502(1)	2.477(1)	2.472(1)	
$\mathrm{Co}(n)-\mathrm{P}(n)(n=1,2)$		2.216, 2.215(3)	2.219, 2.211(2)	2.214, 2.198(2)	
$\mathrm{Co}(1,2,3)-\mathrm{C}(n)[\mathrm{C}(n)]$		1.880, 1.916,	1.909, 1.905,	1.904, 1.910,	
		1.953(8) [C(4)]	1.950(7) [C(4)]	1.950(5) [C(6)]	
Bond angles (${ }^{\circ}$)					
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{N}(12,22)$	101.6(3), 98.4(3)	97.5(3), 103.2(4)	103.1, 96.2(3)	102.1, 105.9(2)	102.5(4), 95.8(4)
					100.0(4), 95.6(4)
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{N}(32)$	176.9(3)	174.7(4)	174.9(3)	169.6(2)	175.6(5) 176.9(4)
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(10,20)$	86.5(4), 87.8(3)	85.0(4), 86.3(3)	88.4, 86.7(4)	81.5, 83.5(2)	83.9(5), 83.1(4)
					85.7(4), 84.6(5)
Mo-C(1)-C(2)	176.8(8)	172.9(9)	176.9(6)	166.2(4)	172.8(10), 174.5(9)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	178.9(7)	177.4(9)	175.0(7)	176.7(6)	172.2(10), 174.7(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{X}[\mathrm{X}]$	179.3(6) [Si]	177.1(7) [C(4)]	175.8(7)	177.8(6) [C(4)]	177.8(10), 176.7(10) [Ru]
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Co}(1,2,3)$		$\begin{aligned} & 138.4(8), 126.0(5), \\ & 128.6(6)[\mathrm{C}(3,4)] \end{aligned}$	$\begin{aligned} & 132.1(5), 135.2(6), \\ & 127.9(5)[\mathrm{C}(3,4)] \end{aligned}$	131.6, 134.4, 129.2(4)	

For 9: $\mathrm{C}(4)-\mathrm{C}(5) 1.231(6), \mathrm{C}(5)-\mathrm{C}(6) 1.371(6) \AA$; $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) 179.9(6), \mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6) 178.7(7)^{\circ}$. For 12: Ru-P(1,2)2.272(3), 2.276(2);2.269(3), 2.297(3); Ru-C(cp*) 2.223-2.279(9), 2.234-2.277(11); Ru-C(cp*) (av.) 2.26(2), 2.25(2) A; P(1)-Ru-P(2)81.7(1), 82.3(1); P(1,2)-Ru-C(3)86.3(3), 84.6(3); 86.6(3), 85.4(3) ${ }^{\circ}$.
${ }^{\text {a }}$ For Mo, read W.
${ }^{\text {b }}$ Italicised values refer to molecule 2.
$1.95(1) \AA$, somewhat shorter than that found in $\mathrm{Ru}\left(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)($ dppe $) \mathrm{Cp}^{*}$ [1.983(2) $\left.\AA\right]$, for example [23].

2.2. Electrochemistry

Most of these complexes are obtained in relatively low yields, one reason for this being their pronounced instability in normal organic solvents, perhaps as a result of ready oxidation. To some extent this is confirmed by electrochemical studies. Table 2 contains potentials measured from CVs obtained under anaerobic conditions. The TpMo / W complexes 2 and 4 show one oxidation event at $E_{1}=+0.89$ and +0.82 V (versus SCE), respectively, while the bromo-carbyne complex is similar, at +0.83 V . None of these complexes contains any other redox-active centre, so it may be reasonably assumed that the events involve the metal centres.

Complexes 7 and 9, which also contain the Co_{3} cluster as a second redox centre, each show a reduction wave between -1.07 and -1.02 V , which by comparison with $\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7} \quad\left(E_{1}=-1.16, \quad E_{2}=\right.$ $+0.79 \mathrm{~V})$ may confidently be assigned to processes centred on the Co_{3} cluster. Oxidation events are found between +0.66 and +0.76 V , but these cannot be assigned defini-
tively to either end-cap. Processes giving rise to the oxidations occur at higher potentials $(+1.16 \mathrm{~V}$ for $7,+0.92$ and +1.14 V for 9) and may arise from the carbon chains or from further chemical transformation of these complexes after oxidation.

Two oxidation events are also found for the $\mathrm{Mo}-\mathrm{C}_{n}-\mathrm{Ru}$ complexes $\mathbf{1 0}-\mathbf{1 4}$. Replacement of Tp in $\mathbf{1 0}$ by Tp^{*} in $\mathbf{1 2}$ has little observable effect on the potentials, while the W complex $\mathbf{1 1}$ is somewhat more difficult to oxidise than its Mo congenor (by 90 mV). As the chain length increases from C_{3} to C_{5} to C_{7}, E_{1} increase by 110 and 160 mV and E_{2} by 20 and 90 mV per added C_{2} unit, reflecting the increasing electron transfer from the metal centre(s) to the C_{n} chain. This feature has previously been observed in the series $\left\{\mathrm{Cp}(\mathrm{OC})_{3} \mathrm{~W}\right\}(\mathrm{C} \equiv \mathrm{C})_{n} \mathrm{Fc}$ where, for $n=2-4, \quad E_{1}$ increases by about 50 mV per added $\mathrm{C} \equiv \mathrm{C}$ unit [24]. This is probably a result of the increasing localisation of the HOMO on the C_{n} chain as the latter increases in length. The related complex $\mathrm{Ru}\left(\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{dppe}) \mathrm{Cp}^{*}$ has $E_{1}=+0.43 \mathrm{~V}$, suggesting that the first process may relate to oxidation at the Ru centre, being reduced by the electron donating power of the other end-cap for the shorter chains. For the C_{7} complex 14 , there is essentially no difference between the two oxidation events and those for the individual end groups when attached to a non-redox-active group

Table 2
Selected electrochemical data

Complex	E_{1}	$i_{\mathrm{c}} / i_{\mathrm{a}}$	E_{2}	E_{3}	E_{4}
$\mathrm{Mo}(\equiv \mathrm{CBr})(\mathrm{CO})_{2} \mathrm{Tp}^{*}$	+0.83	1.0			
$\mathbf{2}$	+0.89	1.0			
$\mathbf{4}$	+0.82	0.65			
$\mathbf{7}$	-1.07	1.0	+0.66	$+1.16^{\mathrm{a}}$	
$\mathbf{9}$	-1.02	1.0	+0.71	$+0.92^{\mathrm{a}}$	$+1.14^{\mathrm{a}}$
$\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)$	-1.16		+0.79		
$\quad(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$					
$\mathbf{1 0}$	+0.23	0.7	$+0.78^{\mathrm{a}}$		
$\mathbf{1 1}$	+0.32	1.0	$+0.76^{\mathrm{a}}$		
$\mathbf{1 2}$	+0.20	0.8	$+0.73^{\mathrm{a}}$		
$\mathbf{1 3}$	+0.31	1.0	+0.75	$+1.17^{\mathrm{a}}$	
$\mathbf{1 4}$	+0.47	0.8	+0.84		

Conditions: $10^{-3} \mathrm{M}$ complex, $0.1 \mathrm{M}\left[\mathrm{NBu}_{4}\right] \mathrm{PF}_{6}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$ at ambient temperature, referenced to $\mathrm{FeCp} 2 /\left[\mathrm{FeCp}_{2}\right]^{+}=$ +0.46 V . Three-electrode cell equipped with Pt disk working electrode, Pt gauze auxiliary electrode, Pt wire pseudo-reference electrode.
${ }^{\text {a }}$ Irreversible.
$\left(\mathrm{SiMe}_{3}\right)$, suggesting that no electronic effect is being communicated between the end-groups.

3. Conclusions

The reactions described above have added significantly to the series of complexes containing the $\mathrm{Tp}^{\prime} \mathrm{M}(\mathrm{CO})_{2}$ group ($\mathrm{Tp}^{\prime}=\mathrm{Tp}, \mathrm{Tp} ; \mathrm{M}=\mathrm{Mo}, \mathrm{W}$) end-capping a carbon chain, examples containing three, four, five, six and seven carbons in the chain having been obtained. These compounds have been characterised by the usual spectroscopic methods, most distinctive being the $v(\mathrm{BH}), v(\mathrm{CO})$ and $v(\mathrm{CC})$ bands in the IR spectra, and the characteristic resonances of the Tp^{\prime} and Cp^{*} groups (if present) in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Not all of the carbon atoms in the chains were found in the latter: the carbyne carbon attached to the Group 6 metal centre occurs at the expected downfield location ($\delta 253-265$ for $\mathrm{Mo} \equiv \mathrm{C}, 246.8$ for $\mathrm{W} \equiv \mathrm{C}$ in 9), at higher frequencies than the $\mathrm{M}-\mathrm{CO}$ resonances ($\delta 224-231$).

Our synthetic approaches have employed either the $\mathrm{AuX}\left(\mathrm{PR}_{3}\right)$-elimination reaction between $\mathrm{Au}(\mathrm{C} \equiv \mathrm{CR})$ $\left(\mathrm{PPh}_{3}\right)$ and halo-carbyne complexes [17] or the metalladesilylation reaction which occurs between trimethylsilylsubstituted alkynes and chlororuthenium precursors such as $\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}^{\prime}$ [21]. Interesting cluster-capped carbon chains are present in $\mathbf{7 - 9}$, formed by linking of the wellknown carbon-tricobalt complex with the Group 6 precursors by means of the $\mathrm{AuX}\left(\mathrm{PR}_{3}\right)$ elimination reaction. These compounds, in which the Co_{3} cluster has been stabilised against possible fragmentation by incorporation of a bridging dppm ligand [17] have the expected spectroscopic properties.

Electrochemical measurements show the presence of reduction and oxidation waves, at ca. -1.1 V and ca. +0.7 V , respectively. Comparison with similar measurements carried out on the individual end-caps shows the former may be assigned to processes centred on the Co_{3}
clusters, while the oxidation can be associated with the Group 6 metal centres. In complexes containing an Ru (dppe) Cp^{*} end-group, only oxidation processes are observed, with potentials somewhat reduced by the presence of the electron-releasing Group 8 fragment. As the chain length increases, a further pair of oxidation processes is found for the C_{5} and C_{7} complexes.

4. Experimental

4.1. General

All reactions were carried out under dry nitrogen, although normally no special precautions to exclude air were taken during subsequent work-up. Common solvents were dried, distilled under argon and degassed before use. Separations were carried out by preparative thin-layer chromatography on glass plates $\left(20 \times 20 \mathrm{~cm}^{2}\right)$ coated with silica gel (Merck, 0.5 mm thick).

4.2. Instruments

IR spectra were obtained on a Bruker IFS28 FT-IR spectrometer. Spectra in thf were obtained using a 0.5 mm path-length solution cell with NaCl windows. Nujol mull spectra were obtained from samples mounted between NaCl discs. NMR spectra were recorded on a Varian 2000 instrument $\left({ }^{1} \mathrm{H}\right.$ at $300.13 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 75.47 MHz , ${ }^{31} \mathrm{P}$ at 121.503 MHz$)$. Unless otherwise stated, samples were dissolved in CDCl_{3} contained in 5 mm sample tubes. Chemical shifts are given in ppm relative to internal tetramethylsilane for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and external $\mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}$ NMR spectra. Electrospray mass spectra (ES MS) were obtained from samples dissolved in MeOH unless otherwise indicated. Solutions were injected into a Varian Platform II spectrometer via a 10 ml injection loop. Nitrogen was used as the drying and nebulising gas. Chemical aids to ionisation were used [25]. Cyclic voltammograms were recorded using a PAR model 263 apparatus. Elemental analyses were by CMAS, Belmont, Vic., Australia.

4.3. Reagents

The complexes $\mathrm{M}(\equiv \mathrm{CBr})(\mathrm{CO})_{2} \mathrm{Tp} \quad[\mathrm{M}=\mathrm{Mo}, \quad \mathrm{W} ;$ $\left.\mathrm{X}=\mathrm{Cl}, \quad \mathrm{Br} ; \quad \mathrm{Tp}=\mathrm{HB}(\mathrm{pz})_{3}\right] \quad[12], \quad \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})$ $(\mathrm{CO})_{7}[18]$ and $\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}^{\prime}\left(\mathrm{Cp}^{\prime}=\mathrm{Cp}, \mathrm{Cp}{ }^{*}\right)$ [26] were prepared as described previously.

4.3.1. $\mathrm{Mo}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)\left\{\mathrm{OC}(\mathrm{O}) \mathrm{CF}_{3}\right\}(\mathrm{CO})_{2}($ tmeda $)$ (1)

A mixture of $\mathrm{HC} \equiv \mathrm{CSiMe}_{3}(0.7 \mathrm{ml}, 5 \mathrm{mmol})$ in diethyl ether (30 ml) was cooled to $-30^{\circ} \mathrm{C}$ and $\mathrm{BuLi}(2 \mathrm{ml}$, 5 mmol) added and stirred at $-30^{\circ} \mathrm{C}$ for 30 min before $\mathrm{Mo}(\mathrm{CO})_{6}(1.32 \mathrm{~g}, 5 \mathrm{mmol})$ in thf $(5 \mathrm{ml})$ was added. The resulting mixture was stirred at $20^{\circ} \mathrm{C}$ for 1 h , cooled to $-78^{\circ} \mathrm{C}$ and $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(0.7 \mathrm{ml}, 5 \mathrm{mmol})$ added. At
$-50^{\circ} \mathrm{C}$ tmeda ($0.75 \mathrm{ml}, 5 \mathrm{mmol}$) was added and the reaction mixture slowly warmed to $20^{\circ} \mathrm{C}$. Pentane (60 ml) was then added and the resulting orange precipitate collected and washed with pentane followed by pentane/ dichloromethane (3/1) to give $\mathrm{Mo}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)\{\mathrm{O}-$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{CF}_{3}\right\}(\mathrm{CO})_{2}($ tmeda) (1) $(980 \mathrm{mg}, 40 \%)$. Single crystals suitable for the X-ray study were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane. Anal. Calc. $\left(\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{MoN}_{2} \mathrm{O}_{4} \mathrm{Si}\right)$: C, 39.19 ; $\mathrm{H}, 5.24$; N, 5.71. Found: C, 39.07; H, 5.24; N, 5.73. IR (thf, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C}) 2046 \mathrm{w}, v(\mathrm{CO}) 2013 \mathrm{~s}, 1934 \mathrm{vs} .{ }^{1} \mathrm{H}$ NMR: δ 0.17 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}$) 3.02 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{NMe}$), 2.80 ($\mathrm{m}, 4 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 2.60\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR: $\delta 0.54\left(\mathrm{~s}, \mathrm{SiMe}_{3}\right)$, $50.85,55.69,60.81(3 \times \mathrm{s}$, tmeda $), 73.33\left(\mathrm{~s}, \mathrm{CCSiMe}_{3}\right)$, $112.74(\mathrm{~s}, \mathrm{C} \equiv \mathrm{C}) 116.88$ [q, $\left.{ }^{1} J(\mathrm{CF}) 289 \mathrm{~Hz}, \mathrm{CF}_{3}\right], 160.88$ [q, ${ }^{1} J(\mathrm{CF}) 36 \mathrm{~Hz}, \mathrm{O}_{2} \mathrm{CCF}_{3}$], $224.76(\mathrm{~s}, \mathrm{CO}), 261.16(\mathrm{~s}$, $\mathrm{Mo} \equiv \mathrm{C})$. ES MS $(\mathrm{m} / \mathrm{z}): 378,\left[\mathrm{M}-\mathrm{O}_{2} \mathrm{CCF}_{3}\right]^{+}$.

4.3.2. $\mathrm{Mo}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2} \mathrm{Tp}$ (2)

A mixture of $\mathrm{Mo}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)(\mathrm{CO})_{2}$ (tmeda) $(230 \mathrm{mg}, \quad 0.47 \mathrm{mmol})$ and $\mathrm{K}[\mathrm{Tp}] \quad(150 \mathrm{mg}$, 0.60 mmol) in dichloromethane (5 ml) was stirred at r.t. for 16 h . The solvent was then removed, and the deep purple residue extracted into dichloromethane and chromatographed on a basic alumina column eluting with hexane/ acetone $(4 / 1)$. The purple band was collected to give $\mathrm{Mo}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2} \mathrm{Tp}(\mathbf{2})(75.6 \mathrm{mg}, 34 \%)$ as micro crystals. Single crystals suitable for X-ray were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane. Anal. Calc. $\left(\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BMoN}_{6} \mathrm{O}_{2} \mathrm{Si}\right)$: C , 43.06; H, 4.04; N, 17.72; $M, 476$. Found: C, 43.09; H, 4.06; N, 17.61. IR (thf, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{BH}) 2482 \mathrm{w}, v(\mathrm{C} \equiv \mathrm{C})$ 2046w, $v(\mathrm{CO}) 2004 \mathrm{~s}$, 1925vs. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.23$ (s, $\left.9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 6.14\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{pz}-\mathrm{C}_{4} \mathrm{H}\right), 6.25[\mathrm{t}$, $\left.{ }^{3} J(\mathrm{HH})=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{pz}-\mathrm{CH}\right], 7.54,7.61\left[2 \times \mathrm{d},{ }^{3} J(\mathrm{HH})\right.$ $=2.1 \mathrm{~Hz}, \quad 2 \times 1 \mathrm{H}, \quad 2 \times \mathrm{pz}-\mathrm{CH}], \quad 7.68, \quad 7.94 \quad[2 \times \mathrm{d}$, $\left.{ }^{3} J(\mathrm{HH})=2.4 \mathrm{~Hz}, 2 \times 2 \mathrm{H}, 2 \times \mathrm{pz-CH}\right] .{ }^{13} \mathrm{C}$ NMR: $\delta 0.44$ ($\mathrm{s}, \mathrm{SiMe}_{3}$), 76.48 ($\mathrm{s}, \mathrm{C} \equiv \mathrm{C}$), 106.05/106.20, 136.26/136.34, 143.43/144.79 ($6 \times \mathrm{s}$, pz-ring C), $113.52(\mathrm{~s}, \mathrm{C} \equiv \mathrm{C}), 227.17$ (s, CO), 259.41 ($\mathrm{s}, \mathrm{C} \equiv \mathrm{Mo}$). ES MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z): 499,[\mathrm{M}+\mathrm{Na}]^{+}$.

4.3.3. $\mathrm{Mo}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2} \mathrm{Tp}^{*}$ (3)

A mixture of $\mathrm{Mo}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)(\mathrm{CO})_{2}$ (tmeda) $(180 \mathrm{mg}, 0.37 \mathrm{mmol})$ and $\mathrm{K}\left[\mathrm{HB}\left(\mathrm{dmpz}_{3}\right)\right](124 \mathrm{mg}$, $0.37 \mathrm{mmol})$ in dichloromethane (20 ml) was stirred at r.t. for 72 h . The solvent was then removed and the deep purple residue extracted into dichloromethane and chromatographed on a basic alumina column, eluting with hexane/acetone (4/1). The purple band was collected to give $\mathrm{Mo}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2} \mathrm{Tp}^{*}$ (3) $(60 \mathrm{mg}, 30 \%)$. Anal. Calc. $\left(\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BMoN}_{6} \mathrm{O}_{2} \mathrm{Si}\right)$: $\mathrm{C}, 49.47 ; \mathrm{H}, 5.60 ; \mathrm{N}, 15.05$; $M, 560$. Found: C, $49.50 ; \mathrm{H}, 5.62$; N, 15.01. IR (thf, $\left.\mathrm{cm}^{-1}\right): \quad v(\mathrm{BH}) \quad 2549 \mathrm{w}, \quad v(\mathrm{C} \equiv \mathrm{C}) \quad 2045 \mathrm{w}, \quad v(\mathrm{CO}) \quad 1995 \mathrm{~s}$, 1915s. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.20\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 2.32$ (s, $3 \mathrm{H}, 5 \mathrm{Me}$), 2.33 ($\mathrm{s}, 6 \mathrm{H}, 5 \mathrm{Me}$), 2.37 ($\mathrm{s}, 3 \mathrm{H}, 3 \mathrm{Me}$), 2.55 (s , $6 \mathrm{H}, 3 \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR: $\delta 0.04$ ($\mathrm{s}, \mathrm{SiMe}_{3}$), 12.97, 14.84, $16.00(3 \times \mathrm{s}, \mathrm{pz}-\mathrm{CMe}), 75.28$ ($\mathrm{s}, \mathrm{C} \equiv \mathrm{C}$), 106.46, 144.49/ 145.16, 151.25/151.52 ($5 \times \mathrm{s}$, pz-ring C), $113.49(\mathrm{~s}, \mathrm{C} \equiv \mathrm{C}$),
227.42 (s, CO), 255.41 (s, $\mathrm{C} \equiv \mathrm{Mo}$). ES MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, \quad m / z): 583, \quad[\mathrm{M}+\mathrm{Na}]^{+} ; \quad 504, \quad[\mathrm{M}-$ $2 \mathrm{CO}]^{+}$.

4.3.4. $\mathrm{Mo}\left\{\equiv \mathrm{CC} \equiv \mathrm{E} \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mathrm{CO})_{2} \operatorname{Tp}$ (5)

A mixture of $\mathrm{Mo}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2} \mathrm{Tp}(400 \mathrm{mg}$, $0.81 \mathrm{mmol}), \mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(400 \mathrm{mg}, 0.81 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(112 \mathrm{mg}, \quad 0.81 \mathrm{mmol})$ in a $4: 1$ mixture of thf $/ \mathrm{MeOH}$ $(150 \mathrm{ml})$ was stirred at r.t. for 2 h . The solvent volume was then reduced (ca 15 ml), and the resulting precipitate collected to afford $\mathrm{Mo}\left\{\equiv \mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mathrm{CO})_{2} \mathrm{Tp}$ (5) ($613 \mathrm{mg}, 88 \%$) as red micro crystals. Anal. Calc. $\left(\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{AuBMoN} \mathrm{N}_{6} \mathrm{P}\right): \mathrm{C}, 44.68 ; \mathrm{H}, 2.93 ; \mathrm{N}, 9.77 ; M$, 862. Found: C, 44.61; H, 2.81; N, 9.66. IR (thf, cm^{-1}): $v(\mathrm{BH}) 2483 \mathrm{w}, v(\mathrm{C} \equiv \mathrm{C}) 2015 \mathrm{w}, v(\mathrm{CO})$ 1982s, 1904s. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 5.62\left[\mathrm{t},{ }^{3} J(\mathrm{HH})=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{pz}-\mathrm{C}^{4} \mathrm{H}\right]$, $5.72\left[\mathrm{t},{ }^{3} J_{\mathrm{HH}}=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{pz}-\mathrm{C}^{2} \mathrm{H}\right], 6.83-7.14(\mathrm{~m}, 15 \mathrm{H}$, $\mathrm{Ph}), 7.21,7.26\left[2 \times \mathrm{d},{ }^{3} J(\mathrm{HH})=2.1 \mathrm{~Hz}, 2 \times 1 \mathrm{H}, \mathrm{pz}-\mathrm{C}_{5} \mathrm{H}\right.$ and $\left.\mathrm{pz}-\mathrm{C}_{3} \mathrm{H}\right], 7.30,7.91\left[2 \times \mathrm{d},{ }^{3} J(\mathrm{HH})=2.1 \mathrm{~Hz}, 2 \times 2 \mathrm{H}\right.$, $\mathrm{pz}-\mathrm{C}_{5} \mathrm{H}$ and $\left.\mathrm{pz}-\mathrm{C}_{3} \mathrm{H}\right] .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 41.64(\mathrm{~s}, 1 \mathrm{P}$, PPh_{3}). ${ }^{13} \mathrm{C}$ NMR (d_{6}-acetone): $\delta 104.65 \quad(\mathrm{~s}, \mathrm{C} \equiv \mathrm{C})$, 106.22/106.27, 136.48/136.56, 144.69/144.82 ($6 \times$ s, pz-ring C), $115.49(\mathrm{~s}, \mathrm{C} \equiv \mathrm{C}), 129.06-134.97(\mathrm{~m}, \mathrm{Ph}), 228.42(\mathrm{~s}$, CO), 265.15 ($\mathrm{s}, \mathrm{C} \equiv \mathrm{Mo}$). ES MS (positive ion, $\mathrm{MeOH}+$ $\mathrm{NaOMe}, \quad m / z): \quad 1322, \quad\left[\mathrm{M}+\mathrm{AuPPh}_{3}\right]^{+} ; \quad 1126, \quad[\mathrm{M}+$ $\left.\mathrm{HPPh}_{3}\right]^{+} ; 885,[\mathrm{M}+\mathrm{Na}]^{+} ; 721,\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$.

4.3.5. $W\left\{\equiv C C \equiv C A u\left(\mathrm{PPh}_{3}\right)\right\}(\mathrm{CO})_{2} \mathrm{Tp}$ (6)

A mixture of $\mathrm{W}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2} \mathrm{Tp}(500 \mathrm{mg}$, $0.9 \mathrm{mmol}), \mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(445 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(125 \mathrm{mg}, 0.9 \mathrm{mmol})$ in a $4: 1$ mixture of $\mathrm{THF} / \mathrm{MeOH}$ $(150 \mathrm{ml})$ was stirred at r.t. for 3 h . After this time the solvent volume was reduced (ca 15 ml), and the resulting precipitate collected to afford $\mathrm{W}\left\{\equiv \mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}$ $(\mathrm{CO})_{2} \mathrm{Tp}(6)(580 \mathrm{mg}, 69 \%)$ as red micro crystals. Anal. Calc. $\left(\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{AuBN}_{6} \mathrm{O}_{2} \mathrm{PW}\right)$: C, $40.54 ; \mathrm{H}, 2.66 ; \mathrm{N}, 8.86$; M, 948. Found: C, $40.57 ; \mathrm{H}, 2.61 ; \mathrm{N}, 8.76$. IR (thf, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{BH}) 2483 \mathrm{w}, \quad v(\mathrm{C} \equiv \mathrm{C}) \quad 2020 \mathrm{w}, \quad v(\mathrm{CO}) 1970 \mathrm{~s}$, 1886s. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 5.55\left[\mathrm{t},{ }^{3} J(\mathrm{HH})=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, pz-C 4 H$], 5.65\left[\mathrm{t},{ }^{3} J(\mathrm{HH})=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \quad\right.$ pz-C $\left.{ }^{4} \mathrm{H}\right], 6.87-$ $6.92(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph}), 7.11,7.31\left[2 \mathrm{~d},{ }^{3} J(\mathrm{HH})=2.4 \mathrm{~Hz}\right.$, $2 \times 1 \mathrm{H}, \quad$ pz $\left.-\mathrm{C}^{2} \mathrm{H}\right], \quad 7.21, \quad 7.97 \quad\left[2 \times \mathrm{d}, \quad{ }^{3} J(\mathrm{HH})=2.4 \mathrm{~Hz}\right.$, $\left.2 \times 2 \mathrm{H}, \mathrm{pz}-\mathrm{C}^{2} \mathrm{H}\right] .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 42.85\left(\mathrm{~s}, 1 \mathrm{P}, \mathrm{PPh}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(d_{6}\right.$-acetone $\left./ \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 106.12 / 106.17,135.67 /$ 135.85, $144.05 / 145.23(6 \times \mathrm{s}$, pz-ring C), 127.58-135.85 (m, Ph), $226.73(\mathrm{~s}, \mathrm{CO}), 258.25(\mathrm{~s}, \mathrm{C} \equiv \mathrm{W})$. ES MS (m / z): 1406, $\quad\left[\mathrm{M}+\mathrm{Au}\left(\mathrm{PPh}_{3}\right)-\mathrm{H}\right]^{+} ; \quad 1351, \quad\left[\mathrm{M}+\mathrm{Au}\left(\mathrm{PPh}_{3}\right)-\right.$ $2 \mathrm{CO}]^{+} ; 1089,\left[\mathrm{M}+\mathrm{Au}\left(\mathrm{PPh}_{3}\right)-2 \mathrm{CO}\right]^{+} ; 971,[\mathrm{M}+\mathrm{Na}]^{+}$; 721, $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} ; 500,[\mathrm{Au}(\mathrm{MeCN})]^{+} ; 459,\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$.

4.3.6. $\left\{T p(O C)_{2} \mathrm{Mo}\right\} \equiv C C \equiv C C \equiv\left\{\mathrm{Co}_{3}(\mu-d p p m)(\mathrm{CO})_{7}\right\}$ (7)

A mixture of $\mathrm{Mo}\left\{\equiv \mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mathrm{CO})_{2} \mathrm{Tp}(50 \mathrm{mg}$, $0.06 \mathrm{mmol}), \quad \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7} \quad(98 \mathrm{mg}, \quad 0.06$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(15 \mathrm{mg}, 0.013 \mathrm{mmol})$ and $\mathrm{CuI}(5 \mathrm{mg}$, $0.026 \mathrm{mmol})$ was stirred in thf $(15 \mathrm{ml})$ at r.t. for 2 h . The solvent was then removed and the resulting dark purple
residue purified by preparative TLC eluting with acetone/ hexane $(3 / 7)$ to obtain $\left\{\mathrm{Tp}(\mathrm{OC})_{2} \mathrm{Mo}\right\} \equiv \mathrm{CC} \equiv \mathrm{CC} \equiv$ $\left\{\mathrm{Co}_{3}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}\right\}(7)$ as a yellow brown band $\left(R_{\mathrm{f}}\right.$ 0.23) ($48 \mathrm{mg}, 39 \%$). Anal. Calc. $\left(\mathrm{C}_{47} \mathrm{H}_{32} \mathrm{BCo}_{3} \mathrm{MoN}_{6} \mathrm{O}_{9} \mathrm{P}_{2}\right)$: C, 48.24; H, 2.76; N, 7.18; M, 1172. Found: C, 48.16; H, 2.81; N, 7.02. IR (thf, cm^{-1}): $v(\mathrm{BH}) 2482 \mathrm{w}, v(\mathrm{CO}) 2060 \mathrm{~s}$, 2011s, 1997 (sh), 1981m, 1904m. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $3.10,4.58\left(2 \mathrm{~m}, 2 \times 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.68,5.77(2 \times \mathrm{s}, \mathrm{br}, 2 \mathrm{H}$, $2 \times \mathrm{pz}-\mathrm{CH}), 6.69-7.74(\mathrm{~m}, 26 \mathrm{H}, \mathrm{Ph}) .{ }^{31} \mathrm{P}$ NMR: $\delta 41.64$ (s, 2P, dppm). ${ }^{13} \mathrm{C}$ NMR: $\delta 40.35\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 105.44 /$ 105.58, 135.47/135.65, 143.09/144.51 ($6 \times \mathrm{s}$, pz-ring C), 87.79, 125.19 ($\mathrm{s}, \mathrm{C} \equiv \mathrm{C}$), 128.54-135.65 (m, Ph), 201.26, 209.90 ($2 \mathrm{~s}, \mathrm{br}, \mathrm{Co}-\mathrm{CO}$), 230.49 (s, Mo-CO), 252.92 (s , $\mathrm{C} \equiv \mathrm{Mo}$). ES MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z$): 1195, $[\mathrm{M}+\mathrm{Na}]^{+} ; 1171,[\mathrm{M}-\mathrm{H}]^{+} ; 1142,[\mathrm{M}-\mathrm{CO}]^{+}$.
4.3.7. $\left\{T p(O C)_{2} W\right\} \equiv C C \equiv C C \equiv\left\{\operatorname{Co}_{3}(\mu-d p p m)(C O)_{7}\right\}$ (8)

A mixture of $\mathrm{W}\left(\equiv \mathrm{CC} \equiv \mathrm{CAuPPh}_{3}\right)(\mathrm{CO})_{2} \mathrm{Tp}(57 \mathrm{mg}$, $0.06 \mathrm{mmol}), \quad \mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CBr}\right)(\mu-\mathrm{dppm})(\mathrm{CO})_{7} \quad(98 \mathrm{mg}, \quad 0.06$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20 \mathrm{mg}, 0.017 \mathrm{mmol})$ and $\mathrm{CuI}(5 \mathrm{mg}$, $0.026 \mathrm{mmol})$ was stirred in thf $(10 \mathrm{ml})$ at r.t. for 2 h . The solvent was then removed and the resulting residue purified by preparative TLC eluting with acetone/hexane $(3 / 7)$ to obtain $\left\{\mathrm{Tp}(\mathrm{OC})_{2} \mathrm{~W}\right\} \equiv \mathrm{CC} \equiv \mathrm{CC} \equiv\left\{\mathrm{Co}_{3}(\mu\right.$-dppm $\left.)(\mathrm{CO})_{7}\right\}$ (8) as a brown band ($R_{\mathrm{f}} 0.36$) ($28 \mathrm{mg}, 37 \%$). Anal. Calc. $\left(\mathrm{C}_{47} \mathrm{H}_{32} \mathrm{BCo}_{3} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{P}_{2} \mathrm{~W}\right): \mathrm{C}, 44.84 ; \mathrm{H}, 2.56 ; \mathrm{N}, 6.68 ; M$, 1258. Found: C, 44.72; H, 2.58; N, 6.54. IR (thf, cm^{-1}): $v(\mathrm{CO}) 2058 \mathrm{~s}, 2010 \mathrm{~s}, 1994$ (sh), 1970m, 1885m. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 3.11,4.70\left(2 \mathrm{~m}, 2 \times 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.60,5.70[2 \times \mathrm{t}$, $\left.{ }^{3} J(\mathrm{HH})=2.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{pz}-\mathrm{CH}\right] 6.66-8.04(\mathrm{~m}, 26 \mathrm{H}, \mathrm{Ph})$. ${ }^{31} \mathrm{P}$ NMR: $\delta 32.15$ (s, 2P, dppm). ${ }^{13} \mathrm{C}$ NMR: $\delta 41.93$ (s , $\left.\mathrm{CH}_{2}\right), 106.65 / 106.71,135.44 / 135.76,144.57 / 146.05(6 \times \mathrm{s}$, pz-ring C), $128.08-141.41(\mathrm{~m}, \mathrm{Ph}), 198.89,202.00(2 \times \mathrm{s}$, br, Co-CO), 229.97 ($\mathrm{s}, \mathrm{W}-\mathrm{CO}$), 246.80 ($\mathrm{s}, \mathrm{C} \equiv \mathrm{W})$. ES MS $(\mathrm{m} / \mathrm{z})$: 1257, $[\mathrm{M}-\mathrm{H}]^{-} ; 1229,[\mathrm{M}-\mathrm{H}-\mathrm{CO}]^{-}$.

4.3.8. $\left\{\mathrm{Tp}^{*}(\mathrm{OC})_{2} \mathrm{Mo}\right\} \equiv C(C \equiv C)_{2} C \equiv\left\{\mathrm{Co}_{3}(\mu-\mathrm{dppm})\right.$ (CO$\left.)_{7}\right\}(9)$

A mixture of $\mathrm{Mo}(\equiv \mathrm{CBr})(\mathrm{CO})_{2} \mathrm{Tp}^{*}(28 \mathrm{mg}, 0.047 \mathrm{mmol})$, $\mathrm{Co}_{3}\left\{\mu_{3}-\mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(60 \mathrm{mg}, 0.047$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(15 \mathrm{mg}, 0.013 \mathrm{mmol})$ and $\mathrm{CuI}(5 \mathrm{mg}$, $0.026 \mathrm{mmol})$ was stirred in thf $(10 \mathrm{ml})$ at r.t. for 1 h . The solvent was then removed and the resulting residue purified by preparative TLC eluting with acetone/hexane (3/7) to

obtain

$\left\{\mathrm{Tp}^{*}(\mathrm{OC})_{2} \mathrm{Mo}\right\} \equiv \mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{2} \mathrm{C} \equiv\left\{\mathrm{Co}_{3}(\mu-\mathrm{dppm})\right.$ $\left.(\mathrm{CO})_{7}\right\}(9)$ as a brown band $\left(R_{\mathrm{f}} 0.34\right)(43 \mathrm{mg}, 72 \%)$. An analytically pure sample was obtained through crystallisation from chloroform. Anal. Calc. $\left(\mathrm{C}_{55} \mathrm{H}_{44} \mathrm{BCo}_{3} \mathrm{Mo}\right.$ $\mathrm{N}_{6} \mathrm{O}_{9} \mathrm{P}_{2} . \mathrm{CHCl}_{3}$): C, 48.07; $\mathrm{H}, 3.24 ; \mathrm{N}, 6.01 ; ~ M$ (unsolvated), 1279. Found: C, 48.60; H, 3.14; N, 5.45. IR (thf, cm^{-1}): $v(\mathrm{C} \equiv \mathrm{C}) 2109 \mathrm{w}, v(\mathrm{CO}) 2060 \mathrm{~s}, 2012 \mathrm{~s}, 1989 \mathrm{~m}$, $1973 \mathrm{~m}, 1908 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.32,2.34,(2 \times \mathrm{s}$, $2 \times 3 \mathrm{H}, \mathrm{Me}), 2.38,2.61(2 \times \mathrm{s}, 2 \times 6 \mathrm{H}, \mathrm{Me}), 3.42,4.26$ $\left(2 \times \mathrm{m}, 2 \times 1 \mathrm{H}, \mathrm{CH}_{2}\right), 5.71\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{3}\right)$, 7.23-7.54 (m, 26H, Ph). ${ }^{13} \mathrm{C}$ NMR: $\delta 12.68,14.65,15.93$ $\left(3 \mathrm{~s} \mathrm{~s}, \mathrm{pz}-\mathrm{C}_{3} \mathrm{Me}\right), 44.45\left[\mathrm{t}, \mathrm{J}(\mathrm{CP}) 22 \mathrm{~Hz}, \mathrm{CP}_{2}\right], 52.55$,
96.73, $\quad 100.92, \quad 107.95(4 \times \mathrm{s}, \quad \mathrm{C} \equiv \mathrm{C}), \quad 106.34 / 106.36$, 144.45/145.07, $151.28(5 \times \mathrm{s}$, pz-ring C), 128.57-135.06 (m, Ph), 201.29, $209.49(2 \times \mathrm{s}, \mathrm{br}, \mathrm{Co}-\mathrm{CO}), 229.48(\mathrm{~s}$, Mo-CO), 261.02 ($\mathrm{s}, \mathrm{C} \equiv \mathrm{Mo}$). ${ }^{31} \mathrm{P}$ NMR: $\delta 34.13$ (s, 2P, dppm). ES MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z$): 1302, $[\mathrm{M}+\mathrm{Na}]^{+}$.

4.3.9. $\left\{T p(O C)_{2} M o\right\} \equiv C C \equiv C\left\{R u(d p p e) C p^{*}\right\}$ (10)

To a mixture of $\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}^{*}(40 \mathrm{mg}, 0.06 \mathrm{mmol})$ and KF $(3.5 \mathrm{mg}, 0.06 \mathrm{mmol})$ in methanol at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Mo}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2} \mathrm{Tp}(22.5 \mathrm{mg}, 0.06 \mathrm{mmol})$. The resulting mixture was allowed to warm to r.t. and stirred for 2 h . The precipitate which formed was then collected and washed with $\mathrm{MeOH}(10 \mathrm{ml})$ followed by hexane $(20 \mathrm{ml})$ to obtain $\left\{\mathrm{Tp}(\mathrm{CO})_{2} \mathrm{Mo}\right\} \equiv \mathrm{CC} \equiv \mathrm{C}\left\{\mathrm{Ru}(\right.$ dppe $\left.) \mathrm{Cp}^{*}\right\}$ (10) as a red solid ($37 \mathrm{mg}, 60 \%$). Anal. Calc. $\left(\mathrm{C}_{50} \mathrm{H}_{49} \mathrm{BMo}-\right.$ $\mathrm{N}_{6} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru}$): C, 57.98; H, 4.77; N, 8.11; M, 1035. Found: C, 57.94; H, 4.69; N, 8.80. IR (thf, cm^{-1}): $v(\mathrm{BH}) 2469 \mathrm{w}, v(\mathrm{CO})$ $1975 \mathrm{~m}, 1902 \mathrm{~s}, 1863 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.50(\mathrm{~s}, 15 \mathrm{H}$, $\left.\mathrm{Cp}^{*}\right), 1.79,2.61\left(2 \mathrm{~m}, 2 \times 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 5.65(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}$, $\left.\mathrm{pz}-\mathrm{C}^{3} \mathrm{H}\right), 5.85\left[\mathrm{t},{ }^{3} J_{\mathrm{HH}}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, pz-CH$], 6.93-7.85$ (m, 26H, Ph). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 79.38$ ($\mathrm{s}, 2 \mathrm{P}$, dppe). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 9.98\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 29.78\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $94.70\left(\mathrm{~s}, C_{5} \mathrm{Me}_{5}\right), 104.91 / 105.10,136.13 / 136.46,143.46 /$ $144.32(6 \times \mathrm{s}$, pz-ring C), $127.58-137.95(\mathrm{~m}, \mathrm{Ph}), 230.63$ (s, CO). ES MS $(\mathrm{m} / \mathrm{z}): 1036,[\mathrm{M}+\mathrm{H}]^{+} ; 1058,[\mathrm{M}+\mathrm{Na}]^{+}$.

4.3.10. $\left\{T p(O C)_{2} W\right\} \equiv C C \equiv C\left\{R u(d p p e) C p^{*}\right\}$ (11)

Similarly, the reaction between $\mathrm{W}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)$ $(\mathrm{CO})_{2} \mathrm{Tp}(34 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{RuCl}(\mathrm{dppe}) \mathrm{Cp}^{*}(40 \mathrm{mg}$, $0.06 \mathrm{mmol})$ and $\mathrm{KF}(3.5 \mathrm{mg}, 0.06 \mathrm{mmol})$ in methanol at $0{ }^{\circ} \mathrm{C}$ gave $\left\{\mathrm{Tp}(\mathrm{OC})_{2} \mathrm{~W}\right\} \equiv \mathrm{CC} \equiv \mathrm{C}\left\{\mathrm{Ru}(\mathrm{dppe}) \mathrm{Cp}^{*}\right\} \quad$ (11), obtained as an orange solid ($24 \mathrm{mg}, 31 \%$). Anal. Calc. $\left(\mathrm{C}_{50} \mathrm{H}_{49} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{RuW}\right): \mathrm{C}, 53.37 ; \mathrm{H}, 4.39 ; \mathrm{N}, 7.47 ; M$, 1124. Found: C, 53.23; H, 4.28; N, 7.31. IR (thf, cm^{-1}): $v(\mathrm{BH}) 2478 \mathrm{w}, \quad v(\mathrm{CC}) 1976 \mathrm{~m}, \quad v(\mathrm{CO}) 1900 \mathrm{~s}, 1849 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.55\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{Cp}^{*}\right), 1.85,2.73(2 \mathrm{~m}$, $2 \times 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $5.60\left(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, \mathrm{pz}-\mathrm{C}_{4} \mathrm{H}\right), 5.82(\mathrm{~s}, \mathrm{br}$, $\left.2 \mathrm{H}, \mathrm{pz}-\mathrm{C}_{4} \mathrm{H}\right), 6.90-7.92(\mathrm{~m}, 26 \mathrm{H}, \mathrm{Ph}) .{ }^{31} \mathrm{P}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 78.87$ (s, 2P, dppe). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 10.41$ (s, $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right), 30.79\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 94.90\left(\mathrm{~s}, C_{5} \mathrm{Me}_{5}\right), 105.94 /$ 106.04, 134.84/135.15, 145.40/145.51 ($6 \times \mathrm{s}$, pz-ring C), 129.95-141.03 (m, Ph), 228.46 (s, CO). ES MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z): 1146,[\mathrm{M}-\mathrm{H}+\mathrm{Na}]^{+} ; 1124$, $[\mathrm{M}+\mathrm{H}]^{+} ; 635,\left[\mathrm{Ru}(\text { dppe }) \mathrm{Cp}^{*}\right]^{+}$.

4.3.11. $\left\{T p^{*}(O C)_{2} M o\right\} \equiv C C \equiv C\left\{R u(d p p e) C p^{*}\right\} \quad$ (12)

Similarly, from $\mathrm{RuCl}($ dppe $) \mathrm{Cp}^{*}(36 \mathrm{mg}, 0.05 \mathrm{mmol})$ and KF $\quad(3 \mathrm{mg}, \quad 0.05 \mathrm{mmol})$ was obtained $\left\{\mathrm{Tp}^{*}(\mathrm{OC})_{2}\right.$ $\mathrm{Mo}\} \equiv \mathrm{CC} \equiv \mathrm{C}\left\{\mathrm{Ru}(\mathrm{dppe}) \mathrm{Cp}^{*}\right\}$ (12) as an orange solid ($20 \mathrm{mg}, 36 \%$). Anal. Calc. $\left(\mathrm{C}_{56} \mathrm{H}_{61} \mathrm{BMoN}_{6} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru}\right)$: C, 60.06; H, 5.49; N, 7.50; $M, 1120$. Found: C, $58.98 ; \mathrm{H}$, $5.33 ; \mathrm{N}, 7.44$. IR (thf, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{BH}) 2524 \mathrm{w}, v(\mathrm{CC}) 1971 \mathrm{w}$, $v(\mathrm{CO}) 1899 \mathrm{~s}, 1856 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.59(\mathrm{~s}, 15 \mathrm{H}$, $\left.\mathrm{Cp}^{*}\right), 1.98,2.81\left(2 \mathrm{~m}, 2 \times 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.18,2.63(2 \times \mathrm{s}$, $2 \times 3 \mathrm{H}, \mathrm{Me}), 2.24,2.69(2 \times \mathrm{s}, 2 \times 6 \mathrm{H}, \mathrm{Me}), 5.46(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}^{3}\right), 5.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 6.93-7.87(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}) .{ }^{31} \mathrm{P}$ NMR

Table 3
Crystal data and refinement details

	Complex 1	Complex 2	Complex 7	Complex 8	Complex 9	Complex 12
Formula	$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{MoN}_{2} \mathrm{O}_{2} \mathrm{Si}$	$\begin{aligned} & \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BMoN}_{6} \mathrm{O}_{2} \mathrm{Si} \\ & 0.167 \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{47} \mathrm{H}_{32} \mathrm{BCo}_{3} \mathrm{MoN}_{6} \mathrm{O}_{9} \mathrm{P}_{2} . \\ & 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	$\mathrm{C}_{47} \mathrm{H}_{32} \mathrm{BCo}_{3} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{P}_{2} \mathrm{~W}$	$\begin{aligned} & \mathrm{C}_{55} \mathrm{H}_{44} \mathrm{BCo}_{3} \mathrm{MoN}_{6} \mathrm{O}_{9} \mathrm{P}_{2} \\ & 2 \mathrm{CHCl}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{56} \mathrm{H}_{61} \mathrm{BMoN}_{6} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru} \cdot \\ & 1.25 \mathrm{C}_{6} \mathrm{H}_{6} \end{aligned}$
$M_{\text {W }}$	490.46	488.41	1212.77	1258.21	1517.24	1217.56
T (K)	153	153	298	298	298	170
Crystal system	Monoclinic	Trigonal	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	$P 2{ }_{1} / c$	$R \overline{3}$	C2/c	$P 2_{1} / n$	$P \overline{1}$	$P \overline{1}$
$a\left(\right.$ (${ }_{\text {i }}$)	19.350(3)	38.253(4)	26.186(5)	14.792(1)	12.032(1)	17.491(3)
$b\left(\right.$ ® ${ }_{\text {® }}$)	7.601(1)		18.644(3)	17.288(1)	16.335(2)	19.852(3)
$c(\AA)$	15.550(3)	8.2930(8)	25.152(5)	19.467(2)	17.771(2)	20.674(3)
$\alpha\left({ }^{\circ}\right)$					100.130(2)	102.608(3)
$\beta\left({ }^{\circ}\right)$	107.736(3)		120.285(3)	99.253(1)	97.087(2)	107.572(3)
$\gamma\left({ }^{\circ}{ }^{\circ}{ }^{\text {a }}\right.$					105.095(2)	$113.062(3)$
$V\left(\AA^{3}\right)$	2176	10509	10604	4913	3267	5815
$\rho_{c}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	1.497	1.389	1.519	$1.70{ }_{1}$	$1.54{ }_{2}$	$1.39{ }_{1}$
Z	4	18	8	4	2	4
$2 \theta_{\text {max }}\left({ }^{\circ}\right.$)	53	50	50	50	58	50
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left(\mathrm{mm}^{-1}\right)$	0.71	0.67	1.32	3.45	1.29	0.58
$T_{\text {min } / \text { max }}$	0.75	0.86	0.70	0.77	0.87	0.91
Crystal dimensions (mm^{3})	$0.32 \times 0.11 \times 0.09$	$0.08 \times 0.08 \times 0.05$	$0.30 \times 0.23 \times 0.14$	$0.23 \times 0.21 \times 0.19$	$0.56 \times 0.28 \times 0.08$	$0.50 \times 0.12 \times 0.12$
$N_{\text {tot }}$	20104	25070	38640	45371	30189	41379
$N\left(R_{\text {int }}\right)$	4447 (0.046)	4087 (0.12)	8879 (0.076)	8616	15579 (0.038)	18752 (0.049)
N_{0}	3853	2674	5214	6784	10071	13468
R	0.071	0.059	0.071	0.043	0.097	0.083
R_{w}	0.117	0.073	0.094	0.088	0.16	0.161

$\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 78.44$ (s, 2P, dppe). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 10.67$ (s, $\mathrm{C}_{5} \mathrm{Me}_{5}$), 13.30, 15.59, $16.62\left(3 \times \mathrm{s}, \mathrm{pz}-\mathrm{C}_{3} \mathrm{Me}\right), 29.78(\mathrm{~m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $56.41(\mathrm{~s}, \mathrm{C} \equiv \mathrm{C}), 95.07\left(\mathrm{~s}, C_{5} \mathrm{Me}_{5}\right), 106.28 /$ 106.47, 143.51/143.86, 151.51/151.66 ($6 \times \mathrm{s}$, pz-ring C), $123.80-141.57(\mathrm{~m}, \mathrm{Ph}), 230.95(\mathrm{~s}, \mathrm{CO}), 254.47(\mathrm{~s}, \mathrm{Mo} \equiv \mathrm{C})$. ES MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z$): 1143, $[\mathrm{M}+\mathrm{Na}]^{+} ; 1121,[\mathrm{M}+\mathrm{H}]^{+} ; 667,\left[\mathrm{Ru}(\mathrm{MeOH})(\mathrm{dppe}) \mathrm{Cp}^{*}\right] ;$ 635, $\left[\mathrm{Ru}(\text { dppe }) \mathrm{Cp}^{*}\right]^{+}$.

4.3.12. $\left\{T p^{*}(O C){ }_{2} M o\right\} \equiv C C \equiv C C \equiv C\left\{R u(d p p e) C p^{*}\right\}$

 (13)A mixture of $\mathrm{Mo}(\equiv \mathrm{CBr})(\mathrm{CO})_{2} \mathrm{Tp}^{*} \quad(25 \mathrm{mg}, \quad 0.046$ mmol), $\mathrm{Ru}\left\{\mathrm{C} \equiv \mathrm{CC} \equiv \mathrm{CAu}\left(\mathrm{PPh}_{3}\right)\right\}(\mathrm{dppe}) \mathrm{Cp}^{*} \quad(53 \mathrm{mg}$, $0.046 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{mg}, 0.009 \mathrm{mmol})$ and CuI $(5 \mathrm{mg}, 0.026 \mathrm{mmol})$ was stirred in thf $(10 \mathrm{ml})$ at r.t. for 1 h . The solvent was then removed and the resulting residue purified by preparative t.l.c. eluting with acetone/hexane $(3 / 7)$ to obtain $\left\{\mathrm{Tp}^{*}(\mathrm{OC})_{2} \mathrm{Mo}\right\} \equiv \mathrm{CC} \equiv \mathrm{CC} \equiv$ $\mathrm{C}\left\{\mathrm{Ru}(\mathrm{dppe}) \mathrm{Cp}^{*}\right\}$ (13) as a red band $\left(R_{\mathrm{f}} 0.38\right)(20 \mathrm{mg}$, $67 \%)$. Anal. Calc. $\left(\mathrm{C}_{58} \mathrm{H}_{61} \mathrm{BMoN}_{6} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru} . \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: C, 59.38; H, 5.32; N, 7.04; M (unsolvated), 1144. Found: C, 59.62; H, 5.32; N, 6.90. IR (thf, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{BH}) 2484 \mathrm{w}$, $v(\mathrm{CO}) 2021 \mathrm{~s}, 1947 \mathrm{~s}, 1881 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.45(\mathrm{~s}$, $\left.15 \mathrm{H}, \mathrm{Cp}^{*}\right), 1.68,2.32\left(2 \times \mathrm{m}, 2 \times 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.11$, $2,43(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, \mathrm{Me}), 2.19,2.75(2 \times \mathrm{s}, 2 \times 6 \mathrm{H}, 5 \mathrm{Me})$, $5.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 5.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 5.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 6.79-$ 7.73 (m, 20H, Ph). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 53.66\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, 79.05 ($\mathrm{s}, 2 \mathrm{P}$, dppe). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 10.42$ (s , $\mathrm{C}_{5} \mathrm{Me}_{5}$), 13.03, 15.40, $16.58\left(3 \times \mathrm{s}, 3 \times \mathrm{pz}-\mathrm{C}_{3} \mathrm{Me}\right), 29.99$ ($\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 53.66, $92.65(\mathrm{~s}, \mathrm{C} \equiv \mathrm{C}), 94.87\left(\mathrm{~s}, C_{5} \mathrm{Me}_{5}\right)$, 106.62/106.67, 143.80/144.38, 151.64/152.08 $(6 \times$ s, pz-ring C), 128.08-148.65 (m, Ph), 230.29 (s, CO), $260.85(\mathrm{~s}$, $\mathrm{Mo} \equiv \mathrm{C})$. ES MS (m/z): 635, $\left[\mathrm{Ru}(\mathrm{dppe}) \mathrm{Cp}^{*}\right]^{+} ; 676$, $\left[\mathrm{Ru}(\mathrm{MeCN})(\text { dppe }) \mathrm{Cp}^{*}\right]^{+} ; 1167,[\mathrm{M}+\mathrm{Na}]^{+}$.

4.3.13. $\left\{T p^{*}(\mathrm{CO})_{2} \mathrm{Mo}\right\} \equiv C(C \equiv C)_{3}\left\{R u(d p p e) C p^{*}\right\}$ (14)

A mixture of $\mathrm{Mo}(\equiv \mathrm{CBr})(\mathrm{CO})_{2} \mathrm{Tp}^{*}(23 \mathrm{mg}, 0.04 \mathrm{mmol})$, $\mathrm{Ru}\left\{(\mathrm{C} \equiv \mathrm{C})_{3} \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}(\mathrm{dppe}) \mathrm{Cp}^{*} \quad(50 \mathrm{mg}, \quad 0.04 \mathrm{mmol})$, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{mg}, 0.009 \mathrm{mmol})$ and $\mathrm{CuI}(5 \mathrm{mg}, 0.026$ $\mathrm{mmol})$ was stirred in thf $(10 \mathrm{ml})$ at r.t. for 1 h . The solvent was then removed and the resulting residue purified by preparative t.l.c. eluting with acetone/hexane (3/7) to obtain $\left\{\mathrm{Tp}^{*}(\mathrm{OC})_{2} \mathrm{Mo}\right\} \equiv \mathrm{C}(\mathrm{C} \equiv \mathrm{C})_{3}\left\{\mathrm{Ru}(\mathrm{dppe}) \mathrm{Cp}^{*}\right\} \quad$ (14) \quad as a mauve band ($R_{\mathrm{f}} \quad 0.33$) ($23 \mathrm{mg}, 49 \%$). Anal. Calc. $\left(\mathrm{C}_{60} \mathrm{H}_{61} \mathrm{BMoN}_{6} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Ru} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{C}, 58.48 ; \mathrm{H}, 5.07 ; \mathrm{N}$, 6.71; M (unsolvated), 1112. Found: C, 59.06; H, 5.01; N, 6.38. IR (thf, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{C} \equiv \mathrm{C}) 2116 \mathrm{w}, 2069 \mathrm{w}, 2010 \mathrm{w}$, $v(\mathrm{CO}) 1990 \mathrm{~m}, 1916 \mathrm{~m}, 1868 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 1.43(\mathrm{~s}$, $\left.15 \mathrm{H}, \mathrm{Cp}^{*}\right), 1.72,2.34\left(2 \mathrm{~m}, 2 \times 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.01,2.23$ $(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, \mathrm{Me}), 2.10,2.53(2 \times \mathrm{s}, 2 \times 6 \mathrm{H}, \mathrm{Me}), 5.29(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}^{3}\right), 5.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 6.98-7.62(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}) .{ }^{31} \mathrm{P}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 78.88$ (s, 2P, dppe). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $10.55\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 13.06,14.72,16.44\left(3 \times \mathrm{s}, 3 \times \mathrm{pz}-\mathrm{C}_{3} \mathrm{Me}\right)$, $28.54\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 72.60,78.20,87.43(\mathrm{~s}, \mathrm{C} \equiv \mathrm{C}), 95.30$ $\left(\mathrm{s}, C_{5} \mathrm{Me}_{5}\right), 107.17,144.00 / 145.65,151.77 / 152.03(5 \times \mathrm{s}$, pz-ring C), 127.95-170.80 (m, Ph), 227.55 (s, CO). ES MS (positive ion, $\mathrm{MeOH}+\mathrm{NaOMe}, m / z$): 1191, $[\mathrm{M}+\mathrm{Na}]^{+}$.

4.4. Structure determinations

Full spheres of diffraction data were measured using a Bruker AXS CCD area-detector instrument. $N_{\text {tot }}$ reflections were merged to N unique ($R_{\text {int }}$ cited) after "empirical"/multiscan absorption correction (proprietary software), N_{0} with $F>4 \sigma(F)$ being used in the full matrix least squares refinements. All data were measured using monochromatic Mo $\mathrm{K} \alpha$ radiation, $\lambda=0.71073 \AA$ A. Anisotropic displacement parameter forms were refined for the non-hydrogen atoms, $\left(x, y, z, U_{\text {iso }}\right)_{H}$ being constrained at estimated values. Conventional residuals R, R_{w} are quoted at convergence Neutral atom complex scattering factors were used; computation used the xtal 3.7 program system [27]. Pertinent results are given in the figures (which show non-hydrogen atoms with 50% (low temperature determinations) or 20% probability amplitude displacement ellipsoids (r.t. determinations) and hydrogen atoms with arbitrary radii of $0.1 \AA$) and Tables 1 and 3.

4.5. Variata

Complex 1. Rotational disorder is evident for the CF_{3} and SiMe_{3} groups, each over two sets of sites, the latter also entailing displacement of the C_{3} string; site occupancies of each component were set at 0.5 after trial refinement. The disordered CF_{3} groups lie about the $b c$ face of the cell, the SiMe_{3} groups about $x=0.5$. Refinement was on $|F|$, reflection weights being $\left[\sigma^{2}(F)+\right.$ $\left.0.004 F^{2}\right]^{-1}$.

Complex 2. Difference map residues were modelled in terms of disordered $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ of solvation. The crystal packing is of interest, the quasi-3 axis of the molecule being aligned parallel to crystallographic c. Refinement was on $|F|$, reflection weights being $\left[\sigma^{2}(F)+0.002 F^{2}\right]^{-1}$.

Complex 7. Difference map residues were modelled in terms of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ of solvation, disordered about an inversion centre; the CO groups around $\mathrm{Co}(3)$ are also disordered (site occupancies 0.5).

Complex 8. Refinement was on F^{2}, reflection weights being $\left[\sigma^{2}\left(F^{2}+60 F^{2}\right)\right]^{-1}$.

Complex 9. Displacement amplitudes of the CHCl_{3} were very high but disorder was not resolvable. Refinement was on F^{2}, reflection weights being $\left[\sigma^{2}\left(F^{2}\right)+2 F^{2}\right]^{-1}$.

Complex 12. Weak and limited data would support meaningful anisotropic displacement parameter refinement for Ru , Mo, P only. Refinement was on F^{2}, reflection weights being $\left[\sigma^{2}\left(F^{2}\right)+10.2 F^{2}\right]^{-1}$.

Acknowledgements

We thank the ARC for support of this work, Professor Brian Nicholson (University of Waikato, Hamilton, New Zealand) for providing the mass spectra and Johnson Matthey plc, Reading, for a generous loan of $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$.

Appendix A. Supplementary material

Full details of the structure determinations (except structure factors) have been deposited with the Cambridge Crystallographic Data Centre as CCDC Nos. 293398$293402(\mathbf{1}, \mathbf{2}, 7, \mathbf{9}, \mathbf{1 2})$ and $612585(\mathbf{8})$. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44 1223336 033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk). Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2006.06.043.

References

[1] (a) P.J. Low, M.I. Bruce, Adv. Organomet. Chem. 48 (2002) 71;
(b) M.I. Bruce, P.J. Low, Adv. Organomet. Chem. 50 (2004) 179.
[2] (a) F. Paul, C. Lapinte, in: M. Gielen, R. Willem, B. Wrackmeyer (Eds.), Unusual Structures and Physical Properties in Organometallic Chemistry, Wiley, Chichester, 2002, pp. 219-291;
(b) F. Paul, C. Lapinte, Coord. Chem. Rev. 178-180 (1998) 431.
[3] V.W.-W. Yam, Acc. Chem. Res. 35 (2002) 555.
[4] J.M. Tour, Acc. Chem. Res. 33 (2000) 791.
[5] N.J. Long, in: D.M. Roundhill, J.P. Fackler Jr. (Eds.), Optoelectronic Properties of Inorganic Compounds, Plenum, New York, 1999.
[6] J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim, 1995 (Chapter 8).
[7] M.I. Bruce, B.W. Skelton, A.H. White, N.N. Zaitseva, J. Organomet. Chem. 683 (2003) 398.
[8] (a) R.D. Dewhurst, A.F. Hill, M.K. Smith, Angew. Chem. Int. Ed. 43 (2004) 476;
(b) R.D. Dewhurst, A.F. Hill, A.C. Willis, Organometallics 23 (2004) 1646;
(c) R.D. Dewhurst, A.F. Hill, A.C. Willis, Organometallics 23 (2004) 5903.
[9] (a) W. Weng, J.A. Ramsden, A.M. Arif, J.A. Gladysz, J. Am. Chem. Soc. 115 (1993) 3824;
(b) T. Bartik, W. Weng, J.A. Ramsden, S. Szafert, S.B. Falloon, A.M. Arif, J.A. Gladysz, J. Am. Chem. Soc. 120 (1998) 11071;
(c) R. Dembinski, S. Szafert, P. Haquette, T. Lis, J.A. Gladysz, Organometallics 18 (1999) 5438.
[10] B.E. Woodworth, J.L. Templeton, J. Am. Chem. Soc. 118 (1996) 7418.
[11] (a) M.I. Bruce, M.E. Smith, N.N. Zaitseva, B.W. Skelton, A.H. White, J. Organomet. Chem. 670 (2003) 170;
(b) M.I. Bruce, P.A. Humphrey, G. Melino, B.W. Skelton, A.H. White, N.N. Zaitseva, Inorg. Chim. Acta 358 (2005) 1453.
[12] (a) T. Desmond, F.J. Lalor, G. Ferguson, M. Parvez, J. Chem. Soc., Chem. Commun. (1983) 457;
(b) F.J. Lalor, T.J. Desmond, G.M. Cotter, C.A. Shanahan, G. Ferguson, M. Parvez, B. Ruhl, J. Chem. Soc., Dalton Trans. (1995) 1709.
[13] I.J. Hart, A.F. Hill, F.G.A. Stone, J. Chem. Soc., Dalton Trans. (1989) 2261.
[14] (a) B. Schwenzer, J. Schleu, N. Burzlaff, C. Karl, H. Fischer, J. Organomet. Chem. 641 (2002) 134;
(b) B. Schwenzer, H. Fischer, J. Organomet. Chem. 667 (2003) 16.
[15] (a) M.I. Bruce, T. Blumenthal, O. bin Shawkataly, B.N. Green, I. Lewis, J. Organomet. Chem. 269 (1984) C10;
(b) M.I. Bruce, M.J. Liddell, J. Organomet. Chem. 427 (1992) 263.
[16] R.D. Dewhurst, A.F. Hill, M.K. Smith, Organometallics 24 (2005) 5576.
[17] A.B. Antonova, M.I. Bruce, B.G. Ellis, M. Gaudio, P.A. Humphrey, M. Jevric, G. Melino, B.K. Nicholson, G.J. Perkins, B.W. Skelton, B. Stapleton, A.H. White, N.N. Zaitseva, Chem. Commun. (2004) 960.
[18] M.I. Bruce, K.A. Kramaczuk, G.J. Perkins, B.W. Skelton, A.H. White, N.M. Zaitseva, J. Cluster Sci. 15 (2004) 119.
[19] S. Aime, L. Milone, M. Valle, Inorg. Chim. Acta 18 (1976) 9.
[20] P. Yuan, M.G. Richmond, M. Schwarz, Inorg. Chem. 29 (1990) 679.
[21] M.I. Bruce, B.C. Hall, B.D. Kelly, P.J. Low, B.W. Skelton, A.H. White, J. Chem. Soc., Dalton Trans. (1999) 3728.
[22] U. Arnold, H. Pritzkow, M.J. Calhorda, L.F. Veiros, J. Organomet. Chem. 587 (1999) 233.
[23] M.I. Bruce, B.G. Ellis, M. Gaudio, C. Lapinte, G. Melino, F. Paul, B.W. Skelton, M.E. Smith, L. Toupet, A.H. White, Dalton Trans. (2004) 1601.
[24] M.I. Bruce, M.E. Smith, B.W. Skelton, A.H. White, J. Organomet. Chem. 637-639 (2001) 484.
[25] W. Henderson, J.S. McIndoe, B.K. Nicholson, P.J. Dyson, J. Chem. Soc., Dalton Trans. (1998) 519.
[26] (a) $\mathrm{Cp}^{\prime}=\mathrm{Cp}:$ A.G. Alonso, L.B. Reventos, J. Organomet. Chem. 338 (1998) 249 ;
(b) $\mathrm{Cp}^{\prime}=\mathrm{Cp}^{*}:$ M.I. Bruce, B.G. Ellis, P.J. Low, B.W. Skelton, A.H. White, Organometallics 22 (2003) 3184.
[27] S.R. Hall, D.J. du Boulay, R. Olthof-Hazekamp (Eds.), The xtal 3.7 System, University of Western Australia, Perth, 2000.

[^0]: * Corresponding author. Fax: +61883034358.

 E-mail address: michael.bruce@adelaide.edu.au (M.I. Bruce).

